3-Piece Tinplate Aerosol Cans
Factors in Container Selection and The Manufacturing Process
SATA Aerosol 101 – March 28, 2007
Overview

- Factors and Test Methods - Container Selection
- Regulatory / USDOT Requirements
- Commercial Standards / CSPA
- Materials and the Can Manufacturing Process
Factors to Consider

- Can Size & Style
- Decoration
- Container Linings
- Formula/Container Stability
Can Size and Style

- Several standard can diameters available in a wide variety of heights
- Straight-sided, necked-in, or shaped cans
Can Size and Style

- Aerosol Can Sizes
 - Sales Code Designation
 - Expresses can diameter (at doubleseam) X can height (doubleseam to doubleseam)
 - Three digit number
 - First digit = whole number of inches
 - Second two digits = 16th’s of an inch
 - Example: 211 x 604
 - Can Diameter = 2-11/16 inches
 - Can Height = 6-4/16 inches
<table>
<thead>
<tr>
<th></th>
<th>202 x</th>
<th>211 x</th>
<th>300 x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>406</td>
<td>413</td>
<td>709</td>
</tr>
<tr>
<td>Height</td>
<td>509</td>
<td>604</td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td>700</td>
<td>612</td>
<td>713</td>
</tr>
<tr>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Can Size and Style

Common Aerosol Can Sizes (necked-in)

<table>
<thead>
<tr>
<th>200/202x</th>
<th>202/205x</th>
<th>207.5/211x</th>
<th>211/214x</th>
</tr>
</thead>
<tbody>
<tr>
<td>406</td>
<td>604</td>
<td>413</td>
<td>714</td>
</tr>
<tr>
<td>509</td>
<td>608</td>
<td>604</td>
<td>804</td>
</tr>
<tr>
<td>700</td>
<td>704</td>
<td>612</td>
<td></td>
</tr>
<tr>
<td>710</td>
<td></td>
<td>713</td>
<td></td>
</tr>
<tr>
<td>802</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Can Size and Style
Decoration

- Lithographed or Wrap-label
- Lithography
 - Multi-color process printing, can recreate a wide range of solid colors and halftones to reproduce photographic quality images
 - Variety of exterior coating options
 - Gloss Varnish – standard, high gloss appearance
 - Pearlized Coating – pearlescent appearance
 - Matte Varnish – flat appearance
- Labels
 - Reduced and more flexible inventory
Formula/Container Selection

- Solvent or water-based formula
- Typically
 - Solvent-based: plain (unlined) cans
 - Water-based: plain or lined cans
Formula/Container Selection

- pH is a critical factor in corrosivity and when considering whether to employ a can lining
- pH > 7.0 recommended, > 8.0 even better
 - pH 7-9, consider lined cans
 - Linings often unnecessary and incompatible with more alkaline formulas
 - pH > 9 or 10, consider plain cans
- Consider adding corrosion inhibitors to combat liquid and/or vapor phase corrosion
Formula/Container Selection

- **Can Linings**
 - Designed primarily to protect the formula from the can (metal)
 - Not effective at preventing localized pitting corrosion
Formula/Container Selection

- Can Linings
 - Various coating chemistries available, some offered as single linings while others are used in combination
 - Epoxy
 - Epoxy Phenolic
 - Vinyl
 - Gold Epoxy Phenolic is the industry standard
Formula/Container Interaction

- Types of Interactions
 - Product Degradation
 - Container Degradation

- How to Predict?

- Goal: Formula/Container Compatibility
Product Degradation

- Loss of efficacy
- Product discoloration
- Odor changes
- Product contamination
- Clogged Valves
Container Degradation

- De-tinning
- Rusting
- Lining blisters, loss of adhesion
- Pitting corrosion, perforation
Formula/Container Testing

- To avoid product and container degradation, a variety of test methods are available to evaluate formula/container compatibility
 - Electrochemical Testing
 - Testpacks / Can Stability
Electrochemical Testing

- Several “accelerated” corrosion test methods are commonly used, often in combination
 - Crevice cell, driven can cell, cyclic polarization, electrochemical impedance spectroscopy
- Can predict the mode and severity of corrosion that is anticipated with a given formula
- These are screening tools, not a replacement for testpacks
- Quick indication of stability, reduce development time and expense wasted on failed testpacks
Testpacks / Can Stability

- Static storage of filled cans
- Cans stored at various controlled temperatures
- Opened and evaluated at specific intervals
- Best measure of product/container stability, but time consuming
Regulatory

- USDOT is the regulatory body for aerosols
- Primary Purpose - Safe shipment of filled cans
- Code of Federal Regulations (CFR)
 - CFR 49, §100 to 185
Regulatory

- Three key sections pertaining to aerosols
 - §173.306 “Limited Quantities of Compressed Gases”
 - §178.33 “Specification 2P”
 - §178.33a “Specification 2Q”
Regulatory

- Aerosol - USDOT Classification
- Three main groups, based on internal pressure of filled can at 130 F
 - Non-spec (2N)
 - 2P
 - 2Q
- Customer/Filler must determine which can spec is needed based on actual pressure @ 130F
§173.306 “Limited Quantities of Compressed Gases”

Max Capacity = 1 Liter (33.8 fluid oz)

Pressure @ 130º F of filled aerosol?
- Must be less than 180 psig
- < 140 psig = Non-spec
- 140 - 160 psig = DOT 2P
- 160 - 180 psig = DOT 2Q
- Regardless, can must withstand 1-1/2 x p @ 130º F
Regulatory

- §173.306 “Limited Quantities of Compressed Gases” -- cont’d
- Liquid contents must not fill can @ 130º F
- Must be packed in “strong outside packagings”
- Water Bath
 - Proof Test
 - EACH filled can must be subjected to water bath
 - Bath temp & dwell time must ensure that contents reach 131º F, No leaks or deformation
Regulatory

- §178.33 “Specification 2P”
- Max Capacity = 1 Liter, Max Dia = 3 inches
- Wall Thickness = 0.007” MIN
- Testing -- Buckle/Burst
 - One can per lot (25M or less) must be tested to destruction
 - Must not burst below 240 psig
- Marking – Manuf. ID & “DOT-2P”
Regulatory

- §178.33a “Specification 2Q”
- Max Capacity = 1 Liter, Max Dia = 3 inches
- Wall Thickness = 0.008” MIN
- Testing -- Buckle/Burst
 - One can per lot (25M or less) must be tested to destruction
 - Must not burst below 270 psig
- Marking – Manuf. ID & “DOT-2Q”
Regulatory

- Aerosol - USDOT Classification
- Three main groups, based on internal pressure of filled can
 - Non-spec (2N)
 - 2P
 - 2Q
- Customer/Filler must determine which spec is needed
Regulatory

Overview: Non-Spec, 2P, & 2Q

<table>
<thead>
<tr>
<th></th>
<th>Non-Spec (2N)</th>
<th>DOT 2P</th>
<th>DOT 2Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Pressure-MAX</td>
<td>140 psig.</td>
<td>160 psig.</td>
<td>180 psig.</td>
</tr>
<tr>
<td>Buckle Strength-MIN</td>
<td>140 psig.</td>
<td>160 psig.</td>
<td>180 psig.</td>
</tr>
<tr>
<td>Burst Strength-MIN</td>
<td>210 psig.</td>
<td>240 psig.</td>
<td>270 psig.</td>
</tr>
<tr>
<td>Wall Thickness-MIN</td>
<td>N/A</td>
<td>.007”</td>
<td>.008”</td>
</tr>
<tr>
<td>Req’d Can Marking</td>
<td>N/A</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Pressure Testing (USDOT)</td>
<td>N/A</td>
<td>1/25,000</td>
<td>1/25,000</td>
</tr>
</tbody>
</table>
Commercial Standards

- Primary industry group for aerosol cans is the CSPA (formerly CSMA)
- “CSPA Aerosol Guide”
- Details industry accepted dimensions and test methods
- Section F - “Steel and Tin Plate Aerosol Cans”
Commercial Standards

- CSPA Standards
 - Covers the most common can sizes
 - Information for both straight-sided and necked-in cans
 - Dimensions typically given a letter designation, i.e. “K-dimension”
Commercial Standards
Can Manufacture

- Incoming Material
- Coil Cutting
- Coating
- Lithography
- End Manufacturing
- Can Assembly
Incoming Material

- **Electrolytic Tin Plate (ETP)**
 - Steel onto which a very thin layer of tin is electrolytically deposited

- **Base Box**
 - Unit of surface area = 31,360 in\(^2\)

- **Basis Weight / Baseweight**
 - Expression of metal thickness as weight/SA (pounds per Base Box)
Incoming Material

- **Basis Weight (BW)**
 - Plate Thickness expressed in Pounds/Base Box
 - Calculation: \(\text{BW} \times 0.00011 = \text{Thickness (inches)} \)
 - Basis Weight Range for Aerosol Body Plate
 - 65# to 85#
 - Basis Weight Range for Aerosol End Plate
 - 100# to 130#
Incoming Material

- **Temper**: Measure of plate hardness
 - Contributes to can strength
 - Higher temper allows for use of lower basis weight, but offers reduced ductility
 - Temper Values:
 - Single Reduced: T1 to T5
 - Double Reduced: DR7 - DR9
 - Common tempers used in aerosol components:
 - Bodyplate: DR8
 - Domes/Tops: T2-T4
 - Bottoms: T5
Incoming Material

- Tin Coating
 - Refers to the amount of tin distributed on both sides of the plate
 - 0.20 lb/BB typical for aerosol cans (20 ETP)
 - Differential Plate: 0.50/0.20 lbs/BB
 - 0.25 lb/BB on one side
 - 0.10 lb/BB on the other
Coil Line

- Coil Cutting
 - Typical Coil is 18,000 to 25,000 lbs
 - Ordered by width, cut to specific sheet length
Coating

- Interior Coatings
 - Common interior coating systems
 - Epoxy
 - Epoxy Phenolic
 - Vinyl
Coating

- Exterior Coatings
 - Size Coat, if necessary
 - White Coat
 - Varnish
Lithography

- Offset Lithography
 - Based on the principle that oil and water do not mix
 - Aluminum photopolymer press plate contains ink-receptive (image area) and water-receptive (non-image area) regions
 - Image area of the press plate accepts ink, which is then transferred to the blanket and then from the blanket to the substrate (tin plate sheet)
Lithography

- Offset Lithography
 - Multiple color presses: allows for the application of two or more colors in one “pass”
 - Half-tones allow the appearance of shading and gradation of different colors for photo-quality decoration
 - Protective varnish applied over the decorated plate
 - Both conventional (temperature/heat cure) and UV-cured inks and varnishes are used in decorating aerosols
End Manufacture

- Aerosol dome (top) manufacture
 - Sheets are sheared into strips and fed into press
 - “Blank and Draw” - Blanks are punched from the strip, this initial draw forms a “cup”
End Manufacture

- Aerosol dome (top) manufacture
 - Cup is transferred through multi-stage conversion press
 - Cup is trimmed and critical dimensions are formed here, including the one-inch curl
 - Cut-edge is curled
 - Compound is applied, this compound serves as a gasket in the doubleseam to ensure hermetic seal
End Manufacture

- Aerosol Bottom Manufacture
 - Also begins with sheared strips
 - Blank is punched and the bottom is formed
 - Cut-edge is curled
 - End compound is applied
Can Assembly

- **Slitter/Bodymaker**
 - Sheets of body plate are cut into individual body blanks. Size is dependent upon the diameter and height of the can
 - Body blanks are transferred to bodymaker. The blank is flexed into a cylinder with a slight overlap for welding
Can Assembly

- **Welder**
 - The overlapped portion of the cylinder is passed between two copper electrodes. Electrical current and pressure are applied to weld the two surfaces together.
Can Assembly

- **Sideseam Stripe Application (optional)**
 - A liquid or powder coating is applied to the uncoated metal adjacent to the weld. The cylinder is transported through a series of ovens to cure the stripe material.
 - May be applied to interior and/or exterior of cylinder.
Can Assembly

- **Necking (where applicable)**
 - The diameter of the cylinder at the top and bottom are reduced
 - Provides cosmetic appeal/shape

- **Flanging**
 - Each end of the cylinder is flanged, this will later become the body hook of finished doubleseam
Can Assembly
Can Assembly
Can Assembly

- Top and Bottom Doubleseam
 - One end is seamed on first, then the can is inverted and the other end is applied
 - Takes place in two operations
 - The body hook and cover hook are first formed with the end curl and cylinder flange
 - Pressure is applied around the seam to tighten and smooth
Can Assembly

Cross-Section of Doubleseam
Can Assembly

- Tester
 - Cans are fed through an in-line rotary air tester
 - The can is sealed in the pocket and internal pressure is applied (90 - 120 psig)
 - If a minimum volume of air displacement is detected, the can is rejected

- Packaging (palletizer)
Thank you

Questions?
Contact Matt Kuehn at
matt.kuehn@bwaycorp.com