3-Piece Tinplate Aerosol Cans

Factors in Container Selection and The Manufacturing Process SATA Aerosol 101 – March 28, 2007

Overview

- Factors and Test Methods Container Selection
- Regulatory / USDOT Requirements
- Commercial Standards / CSPA
- Materials and the Can Manufacturing Process

Factors to Consider

- Can Size & Style
- Decoration
- Container Linings
- Formula/Container Stability

•Several standard can diameters available in a wide variety of heights

•Straight-sided, necked-in, or shaped cans

Aerosol Can Sizes

- Sales Code Designation
 - Expresses can diameter (at doubleseam) X can height (doubleseam to doubleseam)
 - Three digit number
 - First digit = whole number of inches
 - Second two digits = 16th's of an inch
 - Example: 211 x 604
 - Can Diameter = 2-11/16 inches
 - Can Height = 6-4/16 inches

Common Aerosol Can Sizes (straight-sided)

<u>202 x</u>	<u>211 x</u>	<u>300 x</u>
406	413	709
509	604	
700	612	
	713	
	908	

Common Aerosol Can Sizes (necked-in)

<u>200/202x</u>	<u>202/205x</u>	<u>207.5/211x</u>	<u>211/214x</u>
406	604	413	714
509	608	604	804
700	704	612	
	710	713	
	802		

Decoration

- Lithographed or Wrap-label
- Lithography
 - Multi-color process printing, can recreate a wide range of solid colors and halftones to reproduce photographic quality images
 - Variety of exterior coating options
 - Gloss Varnish standard, high gloss appearance
 - Pearlized Coating pearlescent appearance
 - Matte Varnish flat appearance
- Labels
 - Reduced and more flexible inventory

- Solvent or water-based formula
- Typically
 - Solvent-based: plain (unlined) cans
 - Water-based: plain or lined cans

- pH is a critical factor in corrosivity and when considering whether to employ a can lining
- pH > 7.0 recommended, > 8.0 even better
 - pH 7-9, consider lined cans
 - Linings often unnecessary and incompatible with more alkaline formulas
 - pH > 9 or 10, consider plain cans
- Consider adding corrosion inhibitors to combat liquid and/or vapor phase corrosion

Can Linings

- Designed primarily to protect the formula from the can (metal)
- Not effective at preventing localized pitting corrosion

Can Linings

- Various coating chemistries available, some offered as single linings while others are used in combination
 - Epoxy
 - Epoxy Phenolic
 - Vinyl

Gold Epoxy Phenolic is the industry standard

Formula/Container Interaction

- Types of Interactions
 - Product Degradation
 - Container Degradation
- How to Predict?
- Goal: Formula/Container Compatibility

Product Degradation

- Loss of efficacy
- Product discoloration
- Odor changes
- Product contamination
- Clogged Valves

Container Degradation

- De-tinning
- Rusting
- Lining blisters, loss of adhesion
- Pitting corrosion, perforation

Formula/Container Testing

- To avoid product and container degradation, a variety of test methods are available to evaluate formula/container compatibility
 - Electrochemical Testing
 - Testpacks / Can Stability

Electrochemical Testing

- Several "accelerated" corrosion test methods are commonly used, often in combination
 - Crevice cell, driven can cell, cyclic polarization, electrochemical impedance spectroscopy
- Can predict the mode and severity of corrosion that is anticipated with a given formula
- These are screening tools, not a replacement for testpacks
- Quick indication of stability, reduce development time and expense wasted on failed testpacks

Testpacks / Can Stability

- Static storage of filled cans
- Cans stored at various controlled temperatures
- Opened and evaluated at specific intervals
- Best measure of product/container stability, but time consuming

- USDOT is the regulatory body for aerosols
- Primary Purpose Safe shipment of filled cans
- Code of Federal Regulations (CFR)
 CFR 49, §100 to 185

- Three key sections pertaining to aerosols
 - §173.306 "Limited Quantities of Compressed Gases"
 - §178.33 "Specification 2P"
 - §178.33a "Specification 2Q"

Regulatory

- Aerosol USDOT Classification
- Three main groups, based on internal pressure of filled can at 130 F
 - Non-spec (2N)
 - 2P
 - 2Q
- Customer/Filler must determine which can spec is needed based on actual pressure @ 130F

- §173.306 "Limited Quantities of Compressed Gases"
- Max Capacity = 1 Liter (33.8 fluid oz)
- Pressure @ 130° F of filled aerosol?
 - Must be less than 180 psig
 - < 140 psig = Non-spec
 - 140 160 psig = DOT 2P
 - 160 180 psig = DOT 2Q
 - Regardless, can must withstand 1-1/2 x p @ 130° F

- §173.306 "Limited Quantities of Compressed Gases" -- cont'd
- Liquid contents must not fill can @ 130° F
- Must be packed in "strong outside packagings"
- Water Bath
 - Proof Test
 - EACH filled can must be subjected to water bath
 - Bath temp & dwell time must ensure that contents reach 131° F, No leaks or deformation

- §178.33 "Specification 2P"
- Max Capacity = 1 Liter, Max Dia = 3 inches
- Wall Thickness = 0.007" MIN
- Testing -- Buckle/Burst
 - One can per lot (25M or less) must be tested to destruction
 - Must not burst below 240 psig
- Marking Manuf. ID & "DOT-2P"

- §178.33a "Specification 2Q"
- Max Capacity = 1 Liter, Max Dia = 3 inches
- Wall Thickness = 0.008" MIN
- Testing -- Buckle/Burst
 - One can per lot (25M or less) must be tested to destruction
 - Must not burst below 270 psig
- Marking Manuf. ID & "DOT-2Q"

- Aerosol USDOT Classification
- Three main groups, based on internal pressure of filled can
 - Non-spec (2N)
 - 2P
 - 2Q
- Customer/Filler must determine which spec is needed

• Overview: Non-Spec, 2P, & 2Q

	Non-Spec(2N)	DOT 2P	DOT 2Q
Internal Pressure-MAX	140 psig.	160 psig.	180 psig.
Buckle Strength-MIN	140 psig.	160 psig.	180 psig.
Burst Strength-MIN	210 psig.	240 psig.	270 psig.
Wall Thickness-MIN	N/A	.007"	.008"
Req'd Can Marking	N/A	YES	YES
Pressure Testing	N/A	1/25,000	1/25,000
(USDOT)			

- Primary industry group for aerosol cans is the CSPA (formerly CSMA)
- "CSPA Aerosol Guide"
- Details industry accepted dimensions and test methods
- Section F "Steel and Tin Plate Aerosol Cans"

- CSPA Standards
 - Covers the most common can sizes
 - Information for both straight-sided and neckedin cans
 - Dimensions typically given a letter designation, i.e. "K-dimension"

NECKED-IN AEROSOL CAN

Can Manufacture

- Incoming Material
- Coil Cutting
- Coating
- Lithography
- End Manufacturing
- Can Assembly

- Electrolytic Tin Plate (ETP)
 - Steel onto which a very thin layer of tin is electrolytically deposited
- Base Box
 - Unit of surface area = 31,360 in²
- Basis Weight / Baseweight
 - Expression of metal thickness as weight/SA (pounds per Base Box)

Basis Weight (BW)

- Plate Thickness expressed in Pounds/Base Box
- Calculation: BWx0.00011=Thickness (inches)
- Basis Weight Range for Aerosol Body Plate
 - 65# to 85#
- Basis Weight Range for Aerosol End Plate
 - 100# to 130#

- Temper: Measure of plate hardness
 - Contributes to can strength
 - Higher temper allows for use of lower basis weight, but offers reduced ductility
 - Temper Values:
 - Single Reduced: T1 to T5
 - Double Reduced: DR7 DR9
 - Common tempers used in aerosol components:
 - Bodyplate: DR8
 - Domes/Tops: T2-T4
 - Bottoms: T5

Tin Coating

- Refers to the amount of tin distributed on both sides of the plate
- 0.20 lb/BB typical for aerosol cans (20 ETP)
- Differential Plate: 0.50/0.20 lbs/BB
 - 0.25 lb/BB on one side
 - 0.10 lb/BB on the other

Coil Line

Coil Cutting

- Typical Coil is 18,000 to 25,000 lbs
- Ordered by width, cut to specific sheet length

- Interior Coatings
 - Common interior coating systems
 - Epoxy
 - Epoxy Phenolic
 - Vinyl

Exterior Coatings

- Size Coat, if necessary
- White Coat
- Varnish

Lithography

Offset Lithography

- Based on the principle that oil and water do not mix
- Aluminum photopolymer press plate contains ink-receptive (image area) and water-receptive (non-image area) regions
- Image area of the press plate accepts ink, which is then transferred to the blanket and then from the blanket to the substrate (tin plate sheet)

Lithography

Offset Lithography

- Multiple color presses: allows for the application of two or more colors in one "pass"
- Half-tones allow the appearance of shading and gradation of different colors for photo-quality decoration
- Protective varnish applied over the decorated plate
- Both conventional (temperature/heat cure) and UV-cured inks and varnishes are used in decorating aerosols

End Manufacture

- Aerosol dome (top) manufacture
 - Sheets are sheared into strips and fed into press
 - "Blank and Draw" Blanks are punched from the strip, this initial draw forms a "cup"

End Manufacture

- Aerosol dome (top) manufacture
 - Cup is transferred through multi-stage conversion press
 - Cup is trimmed and critical dimensions are formed here, including the one-inch curl
 - Cut-edge is curled
 - Compound is applied, this compound serves as a gasket in the doubleseam to ensure hermetic seal

End Manufacture

- Aerosol Bottom Manufacture
 - Also begins with sheared strips
 - Blank is punched and the bottom is formed
 - Cut-edge is curled
 - End compound is applied

Slitter/Bodymaker

- Sheets of body plate are cut into individual body blanks. Size is dependent upon the diameter and height of the can
- Body blanks are transferred to bodymaker. The blank is flexed into a cylinder with a slight overlap for welding

- Welder
 - The overlapped portion of the cylinder is passed between two copper electrodes. Electrical current and pressure are applied to weld the two surfaces together.

- Sideseam Stripe Application (optional)
 - A liquid or powder coating is applied to the uncoated metal adjacent to the weld. The cylinder is transported through a series of ovens to cure the stripe material
 - May be applied to interior and/or exterior of cylinder

- Necking (where applicable)
 - The diameter of the cylinder at the top and bottom are reduced
 - Provides cosmetic appeal/shape
- Flanging
 - Each end of the cylinder is flanged, this will later become the body hook of finished doubleseam

- Top and Bottom Doubleseam
 - One end is seamed on first, then the can is inverted and the other end is applied
 - Takes place in two operations
 - The body hook and cover hook are first formed with the end curl and cylinder flange
 - Pressure is applied around the seam to tighten and smooth

Cross-Section of Doubleseam

Tester

- Cans are fed through an in-line rotary air tester
- The can is sealed in the pocket and internal pressure is applied (90 - 120 psig)
- If a minimum volume of air displacement is detected, the can is rejected
- Packaging (palletizer)

Thank you

Questions? Contact Matt Kuehn at *matt.kuehn@bwaycorp.com*