Introduction to Aerosol Valve Technology

Presented by:
Kevin G. Verville
Technical Director
Objective

- Provide a basic overview of aerosol valves:
 - Valve Types
 - Components
 - Product Design
 - Valve Technology
Determine Valve Requirements

- Determine the Type of Product:
 - Space Spray
 - Air Freshener
 - Air Sanitizer
 - Surface Spray
 - Pan Spray
 - Cleaner
 - Pre-Wash
 - Disinfectant
 - Polish
 - Starch
 - Paint
 - Insect Repellant
 - Insecticide
 - Lubricant
 - Industrial
 - Personal Care
 - Body Spray/Deodorant
 - Antiperspirant
 - Hair Spray
 - Shave Foam or Gel
 - Specialty Product
 - Whipped Cream
 - Fogger
 - Tire Inflator
 - Gas Lighter Refill

- Consider Spray Characteristics:
 - Spray Rate
 - Spray Projection
 - Spray Pattern
 - Particle Size
 - Flammability
 - Cloggage Potential

- Type & Amount of Propellant
 - Hydrocarbon
 - Propane (A-108)
 - Butane
 - n-Butane (A-17)
 - i-Butane (A-31)
 - Propane/Butane Blend (A-17 – A-108)
 - HFC
 - 134a (70 PSIG)
 - 152a (62 PSIG)
 - DME (63 PSIG)
 - Compressed Gas
 - CO₂
 - N₂O
 - N₂
 - Air

- Select the Type of Valve
Aerosol Valve Types

- Female Valve
- Tilt / Toggle Action Valve
- Vertical Action Valve
- Metered Valve
- Plastic Aerosol Valve
Valve Component Nomenclature

- Actuator
- Insert
- Stem
- Gasket
- Spring
- Body
- Mounting Cup
- Dip Tube
Bag-On-Valve
Materials of Construction

3-Ply
PE / AI / BON

4-Ply
PP / BON / AI / PET
PE / BON / AI / PET

Bottoms
Welded, Folded & Gusseted
Barrier Pack

What do you give up?
- Internal Valve Orifice Size and Number Selection
- Dip Tube Options
- Vapor Taps

What does ALL the work?
- Actuators
 - Spray Rate
 - Spray Pattern
 - Atomization
- Product
 - Viscosity
 - Surface Tension
 - Etc.
Sizing

Bag Width minimum = \(\frac{1}{2}\) Container Circumference

Bag Length maximum = from Top of Cup to Top of Bottom Can Dome

Bag is NOT a Balloon
Propellant Considerations

Liquefied versus Compressed Propellant
Pressure Curves
Volume of Propellant
Bottom Line Pressure

UTC Pressurized
TTV Product Filled

Boyle’s Law
PV = nRT → PV = C → $P_1V_1 = P_2V_2$
Boyle’s Law

\[PV = C \]
Actuator

- Dispenses Product
- Provides a Controlled Spray
 - Consistent Spray Rate
 - Actuator or Insert Orifice Diameter
 - Maintains Desired Spray Pattern
 - Actuator or Insert Orifice
 - Mechanical Break-Up (MBU) Configuration
 - Doughnut
 - Full Round
 - Fan Spray
 - Stream / Jet
 - Foam or Mousse
 - Controls Particle Size
 - Actuator Orifice
 - Mechanical Break-Up (MBU) Configuration
Female Valve Actuators

- ‘Valve Stem’ is Tailpiece of Actuator
 - Provides for consumer cleaning
 - Slot Size in Tail Piece Helps Control Spray Rate
Tilt Action Valve Actuators

- Note either angled finger pad or vertical spray

- Available in:
 - One Piece Non-Mechanical Break-Up
 - Two Piece Non-Mechanical Break-Up
 - Two Piece Mechanical Break-Up
 - Extension Tube Actuators
Vertical Action Valve Actuators

- Note flat/horizontal finger pad
- Available in:
 - One Piece Non-Mechanical Break-Up
 - Two Piece Non-Mechanical Break-Up
 - Two Piece Mechanical Break-Up
 - Extension Tube Actuators
Other Actuators...
One-Piece Non-Mechanical Break-Up

- Orifices from 0.020” to 0.050”
- Tapers:
 - Standard
 - Straight
 - Reverse
 - Fan Spray
- Available in most style actuators

Standard
Straight
Reverse
Inserts

- Provides Terminal Orifice for Two Piece Non-MB and MB Actuator Assemblies.
- Controls Spray Pattern:
 - Full Round
 - Doughnut
 - Jet / Stream
 - Fan Spray
- Wide Array of:
 - Orifices: from 0.011” to 0.035”
 - Land Lengths: from 0.010” to 0.057”
 - Counter Bores: Flat Back (no counter bore), small, medium, & large
 - Fan Spray Configuration (Non-MB)
- Some Inserts will Accept an Extension Tube
Two-Piece Non-Mechanical Break-Up
Two Piece Mechanical Break-Up

- MB Styles:
 - 2-Arm
 - 4-Arm Styles (shown)
- Channel Depths (CD) Available in:
 - 0.008”
 - 0.010”
 - 0.018”
 - 0.025”
 - 0.035”
 - 0.045”
Mounting Cup

- **Dimples:**
 - From 0.002” to 0.018” Diameter

- **Profiles:**
 - Conical or High Profile
 - Flat

- **Pedestal Crimp**
 - Holds the valve together
 - Produced by Valve Manufacturer

- **Can Crimp**
 - Provides a permanent gas tight seal to the aerosol container
 - Produced by Filler

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Coatings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top</td>
</tr>
<tr>
<td>Tinplated Steel</td>
<td>Epoxy</td>
</tr>
<tr>
<td></td>
<td>Epoxy</td>
</tr>
<tr>
<td>Tin Free Steel</td>
<td>PET</td>
</tr>
<tr>
<td></td>
<td>PET</td>
</tr>
<tr>
<td>Aluminum</td>
<td>Epoxy</td>
</tr>
<tr>
<td></td>
<td>Epoxy</td>
</tr>
</tbody>
</table>
Stem Gasket

- **Materials:**
 - Buna
 - Neoprene
 - Butyl
 - Viton

- **Function:**
 - Provide a gas tight seal
 - Remain effective over time
 - Exposure to product concentrate and propellant
 - Exposure to temperature changes
Stem Gasket Testing

- **Swell Testing**
 - Seven and Thirty day test results
 - Shrinkage or Excessive Swell will result in valve malfunction or dead valves

- **Gasket Hardness Testing**
 - Durometer measurements
 - Concurrent with Swell tests
 - Slight Softening is Preferred
 - Hardening or Excessive Softening will result in valve malfunction or dead valves

- **Color Leaching**
 - Concurrent with Swell Testing

- **Product Stability Testing**
 - Long-term weight loss evaluation
 - Long-term spray performance
 - Even Small changes in formulation can have dramatic effects on gasket performance
 - If you change the formula, re-test the gasket!
Tilt Action Stems

- Orifices:
 - Single, Double, and Triple Orifices Available
 - Range from 0.013” to 0.030” Diameter

Straight Walled

Retention Ring
Available on Ribbed and Non-Ribbed Styles

Ribbed

Projection

Undercut

Ringed
Vertical Action Stems

- Orifices:
 - Single & Double Orifices Available
 - Range from 0.011” to 0.040” Diameter
 - High Flow: 2 x 0.035” x 0.090”

Straight Walled

High Flow Design

Fast Fill Design

Under Cut
Spring

- Holds the Valve Stem in the Closed Position
- High and Low Force Springs Available in all Valve Models
- Materials:
 - 302 Stainless Steel
 - Hard Drawn Steel (Female Valve Only)
Body / Spring Cup

- Restricted Entrance (RE) from 0.013” to 0.080”
- Vapor Tap (VT) from 0.008” to 0.044”
- Ball Valve (Spray-Anyway)
- Slotted Spring Cups for Inverted Use Only
 - Available in a wide array of RE and VT combinations
Upright / Inverted Spring Cup

Upright Use

Inverted Use
Standard vs. Capillary Tip Tube
Vapor Tap Diameter vs Spray Rate

\[y = -22.241x + 0.9475 \]
\[R^2 = 0.9951 \]

Vapor Tap Diameter vs Spray Rate

\[y = 1.0718e^{-2.138x} \]
\[R^2 = 0.9213 \]
Vapor Tap vs Particle Size

Vapor Tap Diameter (inches)

Particle Size (mm)

D[4, 3]
D[3, 2]
D(v, 0.1)
D(v, 0.5)
Dip Tubing

- **Materials:**
 - **LDPE**
 - For standard (outside fit) bodies and Upright/Inverted bodies
 - **MDPE**
 - For standard (outside fit) bodies
 - For Greater Dip Tube Retention in Aggressive Formulations
 - Standard ID: 0.125”
 - Upright/Inverted body ID: 0.184”
 - **Polypropylene**
 - for Capillary (inside fit) bodies
 - Capillary dip tube can also control Spray Rate
 - ID’s:
 - 0.042”
 - 0.050”
 - 0.062”
Thank You

Any Questions ?