Quality Control - GENERAL PRINCIPLES

March 2015
We should work on our process, not
The outcome of our processes.

W. Edwards Deming
Quality Control Discussion Points

1. Overview RSC Operations.
2. Continuous Improvement Teams
 A. PEQ (Production, Engineering & Quality)
 B. Team DNA
3. Definition of Noncompliance
4. RSC QC Compliance Methods
5. High-level Ops Process Flow
 A. Batch Verification
 B. Ops In process Verification
 C. Manufacturing Sample Inspection
 D. BOM Verification
6. Statistical Process Control
 A. Liquid Fill
 B. CO2 / R134A Propellant
A Family Owned/Private Business - Established in 1924. Company-wide, we produce over 600 products for automotive, heavy duty, hardware, and export markets.

- 400,000 Square Foot Operations
- ISO 9001-2008 Certified
- SAP (ERP) Software
- Fully Staffed R&D Laboratory
- Fully Staffed Marketing Graphics Dept.
- Equipped with Lean Mfg. Production Lines
 - Aerosol Lines
 - Liquid Pour Lines
 - Dedicated Brake Fluid Line
 - Bulk Filling Lines
- 3PL fulfillment & global distribution services
- Onsite tank farm (100+ tanks)
- Rail Spur Access
- RSC manages 12 receiving docks and 24 finish goods shipping docks.
Continuous Improvement Teams

PEQ – Product, Engineering & Quality

Bi-weekly cross functional team meeting.

Chaired by different team member annually.

Team objectives:
1.) Safety
2.) 5S
3.) Reduce Waste
4.) Reduce Downtime
5.) Improve Throughput
6.) New Equipment
Continuous Improvement Team DNA

Understand Your Team!

Team DNA Profiles provides you with a "self look" at your teams ability to solve problems.

Cross functional teams carry the DNA of:

1.) Analyzer
2.) Taskmaster
3.) Participator
4.) Energizer

The objective to is to assemble a well balanced team.
Energizer DNA

My DNA suggests that I prefer working at a fast pace while you juggle multiple priorities.

Brainstorming, new ideas and "what if" scenarios are strengths.

My DNA suggests I’m able to persuade others.

Negative energy, i.e., "what I do not prefer or enjoy," is people, situations and activities, which move at a slow pace and which involve excessive detail and maintenance.
Define Noncompliance

Types of Problems
- Any deviation from the standard
- Gap between actual and desired results
- Unfulfilled customer need

Classify problems into three categories
- Standard not achieved
- Standard achieved but a high standard is now desired
- Performance to the standard varies
RSC Tools and Methods Which Support QC Compliance

• **Quality Management System** @ RSC is ISO 9001:2008 certified.
 – Document Control / Record Control
 – Process Control via workflow
 – Internal Process Audits
 – 8D Discipline Approach to “Root-Cause” Problem Solving

• **Real Time Mfg. Data** Collection and traceability

• **Control Plans**
 – In-process documents listing the product and process characteristics that must be monitored during the manufacturing process, including measurement methods and necessary reaction plans for deviant conditions

• **PEQ Peak Performance Team** (CI Team – Production, Engineering & Quality)
 – RSC Continuous improvement team meets weekly to address CI opportunities in MFG.

• **Facility Wide 5S**
Manufacturing High Level One Page Summary

Quality Control

 - Sample Approval
 - Input
 - Receiving Inspection
 - Formula Verification
 - Flushing
 - Batch Verification

2. Mixing & Blending
 - Tank Farm Storage
 - Mix room Blend
 - Sample Approval
 - Batch Tickets

3. Gasser
 - 12 Samples
 - Liquid Fill Level
 - CO2/R134A
 - Correct Raw Materials
 - Date Code Traceability

4. Process Verification
 - Control of Data
 - Process Output

5. Product Assembly
<table>
<thead>
<tr>
<th>OPS LOCATION</th>
<th>QC CONTROL METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPALLETIZATION</td>
<td>BOM Verification, Start of shift, 12 samples hourly - 899 Aerosol Component and End of the Line Check Sheet.</td>
</tr>
<tr>
<td>CAN CODER</td>
<td>12 SAMPLES HOURLY - VISUAL Start of shift. 899 Aerosol Component and End of the Line Check Sheet.</td>
</tr>
<tr>
<td>FILLING</td>
<td>12 SAMPLES HOURLY - Real time data collection via IT; Bom Explosion - 473 Aerosol Gas and fill weight checks.</td>
</tr>
<tr>
<td>VALVE INSERTION</td>
<td>12 SAMPLES HOURLY - Real time data collection; Doc. 899 Aerosol Component and End of the Line Check Sheet.</td>
</tr>
<tr>
<td>CRIMP</td>
<td>12 SAMPLES - Real time data collection; 475 Aerosol Crimp Stem Vacuum Data Capture if system is down</td>
</tr>
<tr>
<td>GASSING</td>
<td>12 SAMPLES HOURLY - Real time data collection; Doc. 473 Aerosol Gas and fill weight</td>
</tr>
<tr>
<td>Pressure Test</td>
<td>12 SAMPLES HOURLY - Start of shift. Real Time Data Collection via IT; Doc. 1000 Pressure Check Form.</td>
</tr>
<tr>
<td>Rejecter (A-3 Only)</td>
<td>Ref: Doc. 21204 (A3) Filtec Setup Requirements</td>
</tr>
<tr>
<td>Alarm Rejecter @ QC</td>
<td>Ref: Real time data collection via IT; Doc. 473 Aerosol Gas and fill weight checks.</td>
</tr>
<tr>
<td>WATER BATH</td>
<td>START OF SHIFT. Real time data collection via IT; Nitrite Corrosion Protection Log # 492</td>
</tr>
<tr>
<td>CAPPER</td>
<td>Ref: Real time data collection via IT; Doc. 899 Aerosol Component and End of the Line Check Sheet.</td>
</tr>
<tr>
<td>TUBE TAPER</td>
<td>Ref: Real time data collection via IT; Doc. 899 Aerosol Component and End of the Line Check Sheet.</td>
</tr>
<tr>
<td>CASE SEALER/TAPER</td>
<td>Validate Paper Tear</td>
</tr>
<tr>
<td>CASE CODER</td>
<td>START OF SHIFT - HOURLY Doc. 899 Aerosol Component and End of the Line Check Sheet.</td>
</tr>
<tr>
<td>END OF LINE</td>
<td>12 SAMPLES HOURLY - Doc.899 Aerosol Component and End of the Line Check Sheet.</td>
</tr>
<tr>
<td>Online Inspection</td>
<td>Continuous</td>
</tr>
</tbody>
</table>
RSC Statistical Process Control

SPC is applied in order to monitor and control a process. Monitoring and controlling the process ensures that it operates at its full potential.

CPK measures how close a process is running to its specification limits. You must have a Cpk of 1.33 [4 sigma] or higher to satisfy most customers.

PPK measures if the process is capable to meet Customer CTQs (requirements).
Sample of metrics used to monitor quality and customer satisfaction.

- In process DPPM = 1,387
- % Scrap To Sales = .02%
- OTD = 99%
- Fill Rate = 98%
- Customer DPPM = 15
General principles of quality control
• Document / Record Control
• Acceptance Sampling
• Data Monitoring
• In process Controls
• Obtainable Metrics
• Continuous Improvement Initiatives
• Team Building
Thank You!